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Abstract

We study the dihadron azimuthal correlation produced nearly back-to-back in unpolarized

hadron collisions, arising from the product of two Collins fragmentation functions. Using the

latest Collins fragmentation functions extracted from the global analysis of available experimental

data, we make predictions for the azimuthal correlation of two-pion production in pp collisions at

RHIC energies. We find that the correlation is sizable in the mid-rapidity region for moderate jet

transverse momentum.
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I. INTRODUCTION

The transverse momentum dependent (TMD) distributions and fragmentation functions

have received much attention recently [1]. They are believed to be responsible for several

azimuthal asymmetries observed in experiments, such as the single transverse spin asym-

metry (SSA) in semi-inclusive hadron production in deep inelastic scattering (SIDIS) [2, 3]

and in hadronic collisions [4], as well as the large cos(2φ) anomalous azimuthal asymmetry

in back-to-back dihadron production in e+e− annihilation [5].

Among these TMD parton distributions and fragmentation functions, the Sivers quark

distribution [6] and the Collins fragmentation function [7] are mostly discussed in the last

few years. The Sivers quark distribution represents a distribution of unpolarized quarks

in a transversely polarized nucleon, through a correlation between the quark’s transverse

momentum and the nucleon polarization vector. On the other hand, the Collins fragmenta-

tion function describes a transversely polarized quark jet fragmenting into an unpolarized

hadron, whose transverse momentum relative to the jet axis correlates with the transverse

polarization vector of the fragmenting quark.

Though both of them belong to the so-called “naive-time-reversal-odd” (T-odd) func-

tions, they have very different universality properties. For the Sivers functions, it has been

shown that they differ by a sign for the SIDIS and Drell-Yan (DY) processes [8], and those

in the hadronic collisions have even more nontrivial relation to that in SIDIS and DY pro-

cesses [9–13]. On the other hand, the Collins fragmentation function is universal between

different processes, in the SIDIS, e+e− and hadronic collisions [14–16]. The effect of the

Collins fragmentation function has been recently explored by one of us in the azimuthal

asymmetric distribution of hadrons inside a jet in p↑p collision [17]. It is demonstrated that

the asymmetry is sizable at RHIC, therefore, the experimental study of this process could

provide an important information on the universality of the Collins fragmentation function.

Another difference between these two functions is that the Collins fragmentation function

is chiral-odd whereas the Sivers function is chiral-even. Because of its chiral-odd nature, the

Collins effect can only be observed when it is coupled to another chiral-odd distribution

or fragmentation function. In SIDIS, the chiral-odd quark transversity [18] can couple to

the Collins fragmentation function and leads to nonzero azimuthal SSA [7]. This SSA has

been studied by the HERMES [2] and COMPASS [3] collaborations, and very interesting
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results on the Collins fragmentation function have been found. In e+e− annihilation pro-

cess, two Collins fragmentation functions couple to each other in the back-to-back dihadron

production, results into to a cos(2φ) azimuthal asymmetry [19]. This anomalous cos(2φ)

asymmetry has been measured by the BELLE Collaboration [5], and was found consistent

with the HERMES and COMPASS measurements on the Collins fragmentation functions.

Recently a global analysis of these experimental data has been performed and the Collins

fragmentation functions have been extracted [20].

In this paper we investigate the possibility of exploring the Collins fragmentation function

in unpolarized pp collision by studying the azimuthal correlation in back-to-back dihadron

production, following the same wisdom of dihadron production in e+e− annihilation. We

show that the asymmetry is proportional to the product of two Collins fragmentation func-

tion, same as that in e+e− annihilation. Using the latest Collins fragmentation function

extracted from the global analysis of available data on SIDIS and e+e− experiments, we es-

timate the asymmetry for dihadron production at RHIC energy. We find that the azimuthal

asymmetry is sizable at mid-rapidity region for moderate jet transverse momentum. We

argue that this process shall provide addtional important information on the Collins frag-

mentation function and its universality properties.

The rest of the paper is organized as follows. In Sec. II, we derive the theoretical results

for the dihadron azimuthal correlation produced nearly back-to-back in unpolarized hadron

collision. In Sec. III, we present our numerical predictions for the azimuthal correlation in

unpolarized pp collisions for RHIC kinematics. Finally, we summarize our findings and the

corresponding conclusions in Sec. IV.

II. DIHADRON AZIMUTHAL CORRELATION IN UNPOLARIZED HADRON

COLLISION

We study the azimuthal correlation of two hadrons h1 and h2 produced nearly back-to-

back in a hadronic collision,

A(P1) +B(P2) → h1(Ph1) + h2(Ph2) +X, (1)

where both of the incident hadrons A and B are unpolarized. The momenta of the initial

hadrons are denoted by P1 and P2, and those of the final hadrons by Ph1 and Ph2, respectively.
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FIG. 1: The leading order contribution to the cross section of A(P1)+B(P2) → h1(Ph1)+h2(Ph2)+

X with the 2 → 2 partonic process a(k1) + b(k2) → c(q1) + d(q2).

The leading order contribution to the scattering cross section comes from partonic 2 → 2

sub-processes, a(k1) + b(k2) → c(q1) + d(q2), as shown in Fig. 1. The parton momenta are

expanded as follows,

k1 = x1P1 + k1T , (2a)

k2 = x2P2 + k2T , (2b)

Ph1 = z1q1 + p1T , (2c)

Ph2 = z2q2 + p2T , (2d)

where x1 and x2 are the longitudinal momentum fractions, and k1T and k2T are the transverse

momentum of the parton relative to the corresponding incident hadron. q1 and q2 are the

momenta of the nearly back-to-back jets J1 and J2, which has a polar angle θ1 and θ2 relative

to the incoming hadron P1, respectively. The momenta of the incoming hadrons and the

final state two jets form the so-called reaction plane (approximately). Besides carrying a

longitudinal momentum fraction z1 (z2) of the jet J1 (J2), the hadron h1 (h2) also has

a transverse momentum p1T (p2T ) relative to the jet J1 (J2) direction, which defines an

azimuthal angle with the reaction plane: φ1 (φ2), as shown in Fig. 2. Due to the Collins

effect, there will be a correlation between these two azimuthal angles φ1 and φ2, which

is proportional to the product of the two Collins fragmentation functions as we will show

below.
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FIG. 2: Illustration of the kinematics for dihadron production AB → h1h2 +X.

From Fig. 1, the cross section of dihadron production can be written as [13],

dσ =
1

2S

∫

dx1d
2k1Tdx2d

2k2Tdz1d
2p1Tdz2d

2p2T
d3q1

(2π)32E1

d3q2
(2π)32E2

(2π)4δ4(k1 + k2 − q1 − q2)

×Tr [Φ(x1, k1T )Φ(x2, k2T )∆(z1, p1T )∆(z2, p2T )H(k1, k2, q1, q2)H
∗(k1, k2, q1, q2)] , (3)

where S = (P1 + P2)
2, and Φ(x, kT ) and ∆(z, pT ) are the distribution and fragmentation

correlation functions, and H(k1, k2, q1, q2) are the hard part amplitude.

For the unpolarized hadron, the correlation functions Φ(x, kT ) can be simply decomposed

as [21, 22],

Φ(P, x, kT ) =
1

2

[

f(z, k2
T )P/+ h⊥

1 (z, k
2
T )

σµνkTµPν

M

]

, (4)

where f(x, k2
T ) is the unpolarized TMD parton distribution function, and h⊥

1 (z, k
2
T ) is the

Boer-Mulders function [22]. Similarly, we can parameterize the gluon distributions from the

incoming hadrons. The effect of Boer-Mulders function in unpolarized hadronic collisions has

been extensively studied previously [23–25], which will be neglected in our current study. We

will concentrate on the effect coming from the fragmentation correlation function ∆(z, pT ),

which can be expanded as [26]

∆(Ph, z, pT ) =
1

2

[

D(z, p2T )P/h +H⊥
1 (z, p

2
T )

σµνPhµpTν

zMh

]

, (5)

where D(z, p2T ) is the unpolarized TMD fragmentation function, and H⊥
1 is the Collins

function. From its definition, we can see that the Collins function describes a transversely

polarized quark jet fragmenting into an unpolarized hadron [7]. It is this Collins function

that generates a non-vanishing azimuthal correlation between the final state two hadrons.

Since Collins function is a chiral-odd TMD function, the azimuthal correlation will depend

on the product of two Collins functions.
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The phase space integral in Eq. (3) can be simplified by using

d3q1
(2π)32E1

d3q2
(2π)32E2

(2π)4δ4(k1 + k2 − q1 − q2)

= dy1dy2dP
2
⊥

(

1

8πS

)

δ

[

x1 −
P⊥√
S
(ey1 + ey2)

]

δ

[

x2 −
P⊥√
S

(

e−y1 + e−y2
)

]

, (6)

where y1 and y2 are rapidities for the jet J1 and J2, P⊥ is the jet transverse momentum.

Since p1T , p2T ≪ P⊥, the rapidity of the hadron is approximately equal to that of the parent

jet. As stated above, we neglect the intrinsic transverse momentum effects for the incoming

partons. Finally we obtain the cross section for this process as

dσ

dPS =
πα2

s

S2

∑

abcd

fa(x1)

x1

fb(x2)

x2

[

Dc→h1
(z1, p

2
1T )Dd→h2

(z2, p
2
2T )H

U
ab→cd

(

ŝ, t̂, û
)

+

(

p1T · p2T − x1x2

P 2
⊥

(P1 · p1TP2 · p2T + P1 · p2TP2 · p1T )
)

×H⊥
1 (z1, p

2
1T )

z1Mh

H⊥
1 (z2, p

2
2T )

z2Mh

HCollins
ab→cd

(

ŝ, t̂, û
)]

, (7)

where dPS ≡ dy1dy2dP
2
⊥dz1dz2d

2p1Td
2p2T is the phase space for this process, fa(x1) and

fb(x2) are the standard unpolarized parton distribution functions, and ŝ, t̂, and û are the

usual partonic Mandelstam variables. The parton momentum fractions x1 and x2 are fixed

by the delta functions in Eq. (6),

x1 =
P⊥√
S
(ey1 + ey2) , (8a)

x2 =
P⊥√
S

(

e−y1 + e−y2
)

. (8b)
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The normal partonic cross sections HU
ab→cd are well-known [27],

HU
gg→qq̄ =

1

2Nc

[

t̂

û
+

û

t̂

]

− Nc

N2
c − 1

[

t̂2 + û2

ŝ2

]

, (9)

HU
qq̄→q′q̄′ =

N2
c − 1

2N2
c

[

t̂2 + û2

ŝ2

]

, (10)

HU
qq̄→qq̄ =

N2
c − 1

2N2
c

[

t̂2 + û2

ŝ2
+

ŝ2 + û2

t̂2

]

− N2
c − 1

N3
c

[

û2

ŝt̂

]

, (11)

HU
qq′→qq′ =

N2
c − 1

2N2
c

[

ŝ2 + û2

t̂2

]

, (12)

HU
qq→qq =

N2
c − 1

2N2
c

[

ŝ2 + û2

t̂2
+

ŝ2 + t̂2

û2

]

− N2
c − 1

N3
c

[

ŝ2

t̂û

]

, (13)

HU
qq̄→gg =

4(N2
c − 1)

N3
c

[

t̂

û
+

û

t̂

]

− N2
c − 1

Nc

[

t̂2 + û2

ŝ2

]

, (14)

HU
gq→gq = −N2

c − 1

2N2
c

[

ŝ

û
+

û

ŝ

]

+

[

ŝ2 + û2

t̂2

]

, (15)

HU
gg→gg =

4N2
c

N2
c − 1

[

3− t̂û

ŝ2
− ŝû

t̂2
− ŝt̂

û2

]

. (16)

The new hard parts HCollins
ab→cd that are responsible for the azimuthal correlation are given by,

HCollins
gg→qq̄ =

1

Nc

− Nc

N2
c − 1

[

2t̂û

ŝ2

]

, (17)

HCollins
qq̄→q′q̄′ =

N2
c − 1

N2
c

[

t̂û

ŝ2

]

, (18)

HCollins
qq̄→qq̄ =

N2
c − 1

N2
c

[

t̂û

ŝ2

]

− N2
c − 1

N3
c

[

û

ŝ

]

, (19)

HCollins
qq′→qq′ = 0, (20)

HCollins
qq→qq =

N2
c − 1

N3
c

, (21)

and the hard parts for the channels with gluon in the final state, qq̄ → gg, qg → qg and

gg → gg vanish since there is no gluon Collins function.

III. PHENOMENOLOGY STUDY

In this section we first properly define the azimuthal asymmetry to be measured in the

experiments. We then use the latest Collins fragmentation function to estimate this asym-

metry for RHIC kinematics.
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From Eq. (7), the explicit form of the azimuthal correlation depends on the following

function,

h(p1T , p2T , φ1, φ2) ≡ p1T · p2T − x1x2

P 2
⊥

(P1 · p1TP2 · p2T + P1 · p2TP2 · p1T ). (22)

Function h(p1T , p2T , φ1, φ2) is reduced to its simplest form in the partonic center of mass

frame,

h(p1T , p2T , φ1, φ2) = −p1Tp2T cos(φ1 + φ2) . (23)

To take advantage of this simplicity, one could boost from the Lab frame to the partonic

CM frame experimentally. Or equivalently, one can select the events with y1+y2 ≈ 0, where

the Lab frame coincides with the partonic CM frame. In the rest of our paper, we will

take y1 + y2 = 0 in our calculations and present the numerical estimate for the azimuthal

asymmetry.

Integrating over the intrinsic transverse momentum p1T and p2T , we have

dσ

dy1dy2dP 2
⊥dz1dz2

=
πα2

s

S2

∑

abcd

fa(x1)

x1

fb(x2)

x2

Dc→h1
(z1)Dd→h2

(z2)H
U
ab→cd

(

ŝ, t̂, û
)

(24)

While integrating over the moduli of the intrinsic momenta p1T and p2T , and over the

azimuthal angle φ1, one obtain

dσ

dy1dy2dP 2
⊥dz1dz2d (φ1 + φ2)

=
α2
s

2S2

∑

abcd

fa(x1)

x1

fb(x2)

x2

[

Dc→h1
(z1)Dd→h2

(z2)H
U
ab→cd

(

ŝ, t̂, û
)

− cos(φ1 + φ2)δq̂
(1/2)
c→h1

(z1)δq̂
(1/2)
d→h2

(z2)H
Collins
ab→cd

(

ŝ, t̂, û
)

]

, (25)

where δq̂(1/2)(z) is the so-called half-moment of the Collins function given by,

δq̂(1/2)(z) =

∫

d2pTpT
H⊥

1 (z, p
2
T )

zMh

. (26)

Then following the normal analysis in e+e− → h1h2 +X, we define

Ah1h2 (y1, y2, P⊥, z1, z2, φ1 + φ2)

≡ dσ

dy1dy2dP 2
⊥dz1dz2d (φ1 + φ2)

/

1

2π

dσ

dy1dy2dP 2
⊥dz1dz2

= 1− cos(φ1 + φ2)

∑

abcd fa(x1)fb(x2)δq̂
(1/2)
c→h1

(z1)δq̂
(1/2)
d→h2

(z2)H
Collins
ab→cd

∑

abcd fa(x1)fb(x2)Dc→h1
(z1)Dd→h2

(z2)HU
ab→cd

. (27)
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Again to eliminate the false asymmetries [5], we introduce the ratio of the unlike-sign to

like-sign pion production, AU and AL, given by

R ≡ AU

AL

=
1− cos(φ1 + φ2)PU

1− cos(φ1 + φ2)PL

≈ 1− cos(φ1 + φ2) (PU − PL)

≡ 1− cos(φ1 + φ2)A12(y1, y2, P⊥, z1, z2) (28)

with

PU =

∑

abcd fa(x1)fb(x2)
[

δq̂
(1/2)

c→π+(z1)δq̂
(1/2)

d→π−(z2) + δq̂
(1/2)

c→π−(z1)δq̂
(1/2)

d→π+(z2)
]

HCollins
ab→cd

∑

abcd fa(x1)fb(x2) [Dc→π+(z1)Dd→π−(z2) +Dc→π−(z1)Dd→π+(z2)]HU
ab→cd

,(29)

PL =

∑

abcd fa(x1)fb(x2)
[

δq̂
(1/2)

c→π+(z1)δq̂
(1/2)

d→π+(z2) + δq̂
(1/2)

c→π−(z1)δq̂
(1/2)

d→π−(z2)
]

HCollins
ab→cd

∑

abcd fa(x1)fb(x2) [Dc→π+(z1)Dd→π+(z2) +Dc→π−(z1)Dd→π−(z2)]HU
ab→cd

, (30)

A12(y1, y2, P⊥, z1, z2) = PU − PL. (31)

This way the true asymmetry due to Collins effect is encoded in the so-called double

ratio asymmetry parameter A12(y1, y2, P⊥, z1, z2). To evaluate A12 for the dihadron produc-

tion in unpolarized pp collision at
√
S = 200GeV at RHIC, we use the Collins fragmentation

functions [20] extracted from a combined fit to the experimental data from HERMES, COM-

PASS and BELLE collaborations. We use CTEQ5L parton distributions [28] and Kretzer

unpolarized fragmentation function obtained in [29].
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FIG. 3: Azimuthal asymmetry ratios A12(y1, y2, P⊥, z1, z2) (defined in Eq. (28)) of unlike-sign to

like-sign pion production in unpolarized proton-proton scattering at RHIC energy
√
S = 200GeV,

as functions of z2 with y1 = y2 = 0, P⊥ = 4 GeV (left) or P⊥ = 6 GeV (right). The curves are:

solid (0.7 < z1 < 0.9), dashed (0.5 < z1 < 0.7) and dotted (0.3 < z1 < 0.5).
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In Fig. 3, we plot A12(y1, y2, P⊥, z1, z2) for the dihadron production in mid-rapidity y1 =

y2 = 0 region at RHIC energy
√
S = 200 GeV. In the figure on the left, we plot A12 as a

function of z2 at the jet transverse momentum P⊥ = 4 GeV with z1 integrated from three

different ranges 0.3 < z1 < 0.5 (dotted), 0.5 < z1 < 0.7 (dashed), and 0.7 < z1 < 0.9 (solid),

respectively. On the right, we present the same plot but with P⊥ = 6 GeV. We find that the

asymmetry A12 is largest when both z1 and z2 become large, same as what has been observed

in e+e− experiments [5]. On the other hand, A12 decreases when increasing P⊥. This is also

consistent with what BELLE observed if one realizes that ŝ/4P 2
⊥ = sin2 θ in parton CM

frame. Though it has similar features as that in e+e− collision, the asymmetry in hadronic

collision is smaller. This is due to the fact that there is copious gg → gg and qg → qg

contribution to the azimuthal angle independent cross section, while they do not contribute

to the azimuthal dependent part since there is no gluon Collins function. However, the

asymmetry is still around several percent and shall be measurable at RHIC.

These results can be extended to general kinematics, for example, in two different rapidity

regions: |y1| 6= |y2|. In this case, although the azimuthal angular dependence is not exactly

as cos(φ1 + φ2) in Eq. (23), the Collins fragmentation functions will nevertheless lead to a

nonzero mean value of 〈cos(φ1 + φ2)〉. This can be seen from the differential cross section

expression in Eq. (7). The experimental observation of this nonzero effects can be used

as signal of the Collins effects, since the normal fragmentation functions D(z, pT ) will not

contribute to a nonzero 〈cos(φ1 + φ2)〉. We hope that the future RHIC experiments can

carry out these measurements, and provide more information on the Collins fragmentation

functions, which will help us to pin down the mechanism for the single spin asymmetry in

hadronic collisions as we discussed in the Introduction.

IV. SUMMARY

In this paper, we have studied the dihadron azimuthal correlation produced nearly back-

to-back in unpolarized hadron collision, arising from the product of two Collins fragmen-

tation functions. Using the latest Collins fragmentation function extracted from the global

analysis of available experimental data, we make predictions for the azimuthal correlation

of two-pion production in unpolarized pp collisions at RHIC energies. We find that the

feature of the asymmetry is similar to those observed in e+e− annihilation. The asymmetry

10



parameter A12 is sizable in the mid-rapidity region for moderate jet transverse momentum,

and could be measurable in the experiments. The experimental study of this process could

provide the important information on the size of Collins fragmentation function in hadronic

collision, at the same time, it could also be used to test the universality properties of the

Collins fragmentation function in different processes.
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